Adaptive Robust Structure Tensors for Orientation Estimation and Image Segmentation
نویسندگان
چکیده
Recently, Van Den Boomgaard and Van De Weijer have presented an algorithm for texture analysis using robust tensor-based estimation of orientation. Structure tensors are a useful tool for reliably estimating oriented structures within a neighborhood and in the presence of noise. In this paper, we extend their work by using the Geman-McClure robust error function and, developing a novel iterative scheme that adaptively and simultaneously, changes the size, orientation and weighting of the neighborhood used to estimate the local structure tensor. The iterative neighborhood adaptation is initialized using the total least-squares solution for the gradient using a relatively large isotropic neighborhood. Combining our novel region adaptation algorithm, with a robust tensor formulation leads to better localization of low-level edge and junction image structures in the presence of noise. Preliminary results, using synthetic and biological images are presented.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملMotion-based segmentation of image sequences using orientation tensors
This paper adresses the problem of motion-based segmentation of image sequences. Onemotion estimation algorithm and two segmentation algorithms are presented. The motion estimation is based on 3D orientation tensors and the algorithm can be used to estimate a large class of motion models, including the affine model that is used in the segmentation. The segmentation algorithms are based on a com...
متن کاملMotion-based segmentation of image sequences
This Master’s Thesis addresses the problem of segmenting an image sequence with respect to the motion in the sequence. As a basis for the motion estimation, 3D orientation tensors are used. The goal of the segmentation is to partition the images into regions, characterized by having a coherent motion. The motion model is affine with respect to the image coordinates. A method to estimate the par...
متن کاملSalt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...
متن کاملFeature Analysis of Chromatic or Achromatic Components based on Tensor Voting and Text Segmentation using Separated Clustering Algorithm
This paper presents a new technique for segmenting corrupted text images on the basis of color feature analysis by second order tensors. It is show how feature analysis can benefit from analyzing features using second order tensor with chromatic and achromatic components. Proposed technique is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image i...
متن کامل